Manor Drive Primary Academy

Maths Curriculum Overview
 Year 3

Block 1					
W1	3.1.8 \& 3.1.9 Make numbers up to 1000 using dienes	3.1.8 \& 3.1.9 Make numbers up to 1000 using dienes and relate these to numbers on a 0-1000 number line where only 100 s are marked	3.1.8 \& 3.1.9 Estimate the location of numbers on a 0-1000 number line where only 0 and 1000 are shown	3.1.1 \& 3.1.2 Read numbers up 1000 aloud from digits; write numbers up to 1000 in words	3.1.3 Know that hundreds can be seen as ten tens (e.g. 14 tens = 140; $180=$ 18 tens) using dienes to convert between the two
W2	3.1.3 Know that hundreds can be seen as ten tens (e.g. 14 tens $=140$; $180=$ 18 tens) using dienes to convert between the two	3.1.4 Partition numbers up to 1000 into hundreds, tens and ones; recognise that there are 10 hundreds in 1000	3.1.5 Recognise the value of each digit in a 3digit number	3.1.6 Compare numbers up to 1000 using "is greater than", "is less than", "is equal to", "most/greatest", "least", "closest" and "furthest".	3.1.6 Compare numbers up to 1000 using >, < and $=$
W3	3.1.7 Order three to five numbers up to 1000, understanding the terms "ascending order" and "descending order"	3.1.8 Divide 100 into 2, 4,5 and 10 equal parts and read scales marked in multiples of 100 with $2,4,5$ or 10 equal parts	Consolidation of 3.1 Link to reasoning and problem-solving activities	3.4.1 Begin counting in multiples of 4 and find related multiplication and division facts	2.5.23 Convert to 'friendly' numbers (find equivalent expressions) to solve addition questions mentally (e.g. $53+19 \rightarrow 52+20=44)$
W4	2.5.23 Convert to 'friendly' numbers (find equivalent expressions) to solve subtraction questions mentally (e.g. $53-9 \rightarrow 54-10=44$)	3.2.2 Add 1 and 10 to numbers up to 990 mentally, without bridging 100, using dienes to visualise	3.2.2 Add 1 and 10 to numbers up to 990 mentally, bridging 100, using dienes to visualise	3.2.3 Add 100 to numbers up to 900 , using dienes to visualise	3.2.4 Subtract 1-digit numbers from 2-digit numbers using number bond knowledge (e.g. \|12-4=8 so 62-4=58)
W5	3.2.5 Subtract 1 and 10 from numbers up to 1000, without bridging 100, using dienes to visualise	3.2.5 Subtract 1 and 10 from numbers up to 1000, bridging 100, using dienes to visualise	3.2.6 Subtract 100 from numbers up to 1000, using dienes to visualise	3.2.7 Add two 2-digit numbers using expanded column addition without need to rename $\begin{array}{ll} \text { e.g. } 40 & 5 \\ +\quad 30 & 2 \\ \hline 70 & 7 \rightarrow 77 \end{array}$	3.2.8 Add two 2-digit numbers using expanded column addition including need to rename $\begin{aligned} & \text { e.g. } 60 \quad 9 \\ & +\quad 206 \\ & \hline 80 \quad 15 \rightarrow 95 \end{aligned}$
W6	3.2.9 Use expanded column addition to add 2-digit numbers to 3 -	3.2.10 Use expanded column addition to add three 2-digit numbers	3.2.11 Subtract a 2digit number from another using	3.2.11 Subtract a 2digit number from another using	3.2.12 Use expanded column subtraction to subtract 2-digit

digit numbers and 3digit numbers to 3-digit numbers	and to add three 3-digit numbers	expanded column subtraction without need to rename $\begin{array}{r} \text { e.g. } 80 \\ -\quad 50 \\ \hline \quad 30 \end{array}$	expanded column subtraction including need to renamee.g. 6050 ${ }^{1} 2$ $-\quad 30$ 7 20 5 NB: Prepare all the necessary renaming before any subtraction	numbers from 3-digit numbers NB: Prepare all the necessary renaming before any subtraction

Block 2

W1	3.2.13 Use expanded column subtraction to subtract 3-digit numbers from 3-digit numbers	3.2.13 Use column addition and column subtraction when questions are mixed	3.1.10 Relate missing numbers to the parts of a bar model in addition and subtraction equations	3.1.10 \& 3.2 .14 Relate missing numbers to the parts of a bar model in addition and subtraction equations and solve	3.1.11 Understand aggregation, augmentation and additive comparison contexts for addition, then solve using written necessary renaming before any subtraction

| | | Link to reasoning and
 problem-solving activities | related multiplication
 and division facts | amounts that are not
 whole numbers and that
 we can use fractions to
 do this; introduce the
 concept of tenths using a
 bar model as examples of
 a fraction |
| :--- | :--- | :--- | :--- | :--- | :--- |

Block 3

W1	3.4.7 Recognise that there are spaces between numbers on a number line and these can be divided up into different fractions; know that when the gaps between ones are divided by ten we see tenths; identify tenths between 0 and 1 on a number line	3.4.7 Recognise that there are spaces between numbers on a number line and these can be divided up into different fractions; know that when the gaps between ones are divided by ten we see tenths; identify tenths between 0 and 10 on a number line	3.4.9 Count in tenths up to 10 and continue sequences that increase or decrease in tenths	3.4.8 Understand that division can mean that something is scaled down that many times; divide ones by 10 to get fractions	3.4.10 Recognise that there are spaces between numbers on a number line and these can be divided up into different fractions; know that when the gaps between ones are divided by ten we see tenths, but that we can divide these into other fractions (e.g. $1 / 2 \mathrm{~s}, 1 / 3 \mathrm{~s}, 1 / 4 \mathrm{~s}, 1 / 5 \mathrm{~s}$, etc)
W2	3.4.10 Recognise that there are spaces between numbers on a number line and these can be divided up into different fractions; know that when the gaps between ones are divided by ten we see tenths, but that we can divide these into other fractions (e.g. $1 / 2 \mathrm{~s}, 1 / 3 \mathrm{~s}, 1 / 4 \mathrm{~s}, 1 / 5 \mathrm{~s}$, etc)	3.4.11 Understand that the denominator shows how many equal pieces 1 is broken into; understand that this remains true if multiple 'ones' are present (e.g. 2 ones split into fifths are still fifths, even though there are 10 pieces); show this by beginning to recognise improper fractions and relating these to mixed numbers	3.4.12 Represent fractions using a bar model, and begin to recognise the names of fractions in words (specifically 'half', 'third', 'quarter', 'fifth', 'sixth', 'eighth' and 'tenth')	3.4.12 Use a bar model to find unit fractions of amounts (e.g. $1 / 4$ of 16 or $1 / 3$ of 15)	3.4.13 Use a bar model to find fractions of amounts where the numerator is greater than 1
W3	3.4.14 Use bar models to add fractions with the same denominator	3.4.15 Use bar models to subtract fractions with the same denominator	3.4.16 Use bar models to find pairs of fractions that make 1	3.4.17 Use bar models to subtract fractions from 1 (e.g. 1-2/5)	3.4.17 Solve a mixture of addition and subtraction questions involving fractions, including adding and subtracting fractions with the same denominator and subtracting fractions from 1
W4	3.4.19 Use 'is greater than' and 'is less than' to compare different unit fractions	3.4.19 Use > and < to compare different unit fractions	3.4.20 Place three or more unit fractions in ascending or descending order including use of "largest/greatest" and "smallest"	3.4.21 Solve problems relating to comparing and ordering fractions, explaining reasoning, perhaps using pictures as part of explanations	Consolidate 3.4 Link to reasoning and problem-solving activities
W5	Consolidate 3.4 Link to reasoning and problem-solving activities	Consolidate 3.4 Link to reasoning and problem-solving activities	3.4.1 Begin counting in multiples of 6 and find related multiplication and division facts	3.5.1 Tell the time in 5minute intervals on an analogue clock	3.5.2 Relate time on analogue clocks in 5minute intervals to the equivalent time on a digital clock
W6	3.5.2 Relate time on analogue clocks in 5minute intervals to the equivalent time on a digital clock	3.5.3 Understand that time can be told on a 24hour clock and relate this to the equivalent times of the 12-hour clock	3.5.4 Draw a given time on a blank analogue clock, starting with the hour hand before considering the minute hand	3.5.5 Tell the time in 5minute intervals from analogue clocks with Roman numerals	3.5.6 Tell the time to 5 minute intervals on clocks with only $3,6,9$ and 12 marked or where no numbers are marked

Block 4

W1	3.5.7 Read analogue clocks to the nearest minute	3.5.8 Read analogue clocks to the nearest minute and understand the purpose of the second hand	3.5.9 Measure the length of short events to the nearest second using a stopwatch	3.5.10 Make tables of results that show times recorded for short events in seconds or minutes and seconds, converting between the two	3.5.11 Choose reasonable estimates for the duration of events
W2	3.5.12 Compare times on analogue clocks using language of 'before', 'after', 'fast' and 'slow'	3.5.13 Use a blank number line to find the gap in time between events	3.5.14 Use a blank number line to find when events end when given the duration and the start time, and find when events begin given the duration and the end time	Consolidate 3.5 Link to reasoning and problem-solving activities	3.4.2 Continue sequences where $3,4,6$ or 8 is added each time, including sequences that are not multiples of these numbers
W3	3.6.1 Solve multiplication questions related to the $2,3,4,5$, 6,8 and 10 times table times table, and understand multiplication grids	3.6.3 Solve division questions related to the $2,3,4,5,6,8$ and 10 times table times table	3.6.2 Solve a mixture of multiplication and division questions related to $2,3,4,5,6,8$ and 10 times table	3.6.2 Solve a mixture of multiplication and division questions related to $2,3,4,5,6,8$ and 10 times table	3.6.8 Understand what multiplication in an equation means in words and use this to find the other related facts from a given multiplication fact (e.g. $3 \times 7=21$ gives $7 \times 3=21$, $21 \div 3=7$ and $21 \div 7=3$)
W4	3.6.8 Understand what division in an equation means and use this to find the other related facts from a given division fact (e.g. $45 \div 5=9$ gives $45 \div 9=5$, $9 \times 5=45,5 \times 9=45$	3.6.4 Use known multiplication facts to multiply multiples of 10 (e.g. $4 \times 5=20$ so $4 \times 50=200$)	3.6.4 Use known multiplication facts to multiply multiples of 10 (e.g. $4 \times 5=20$ so $4 x 50=200$)	3.6.10 Understand that an area context of multiplication is an example of an array by drawing areas to match multiplication facts	3.6.12 Understand that the area context of multiplication can be used to see that multiplication is distributive across addition (e.g. $2 \times 15 \rightarrow$ $2 \times 10+2 \times 5)$
W5	3.6.12 Understand that the area context of multiplication can be used to see that multiplication is distributive across addition (e.g. $3 \times 48 \rightarrow$ $3 \times 40+3 \times 8)$	3.6.14 Use a simplified area model to multiply 1-digit numbers by 2digit numbers in a grid method, relating this to the area context	3.6.14 Use a simplified area model to multiply 1-digit numbers by 2digit numbers in a grid method, relating this to the area context	3.6.5 Solve multiplication word problems using known facts and grid methods in the context of repeated addition and scaling	3.6.5 Solve division word problems using known facts in the context of sharing and grouping
W6	3.6.6 Solve a mixture of multiplication and division word problems	Consolidation of 3.6	Consolidation of 3.6	3.7.1 Read data from a pictogram including the use of halves of symbols	3.7.2 \& 3.7.6 Collect data using tally charts with increasing confidence

	Link to reasoning and problem-solving activities	Link to reasoning and problem-solving activities		

| |
| :--- | :--- | :--- | :--- | :--- | :--- |

| (e.g. Cost for $21 / 2$
 hours if something
 costs $£ 20$ per hour) | Link to reasoning and
 problem-solving
 activities | aggregation and
 augmentation,
 visualising these
 using part-whole bar
 models and using
 subtraction to check | partitioning and
 reduction, visualising
 these using part-
 whole bar models and
 addition to check | finding a
 difference/comparing,
 visualising these |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| using comparison bar | | | | |
| models and addition | | | | |
| to check | | | | |

Block 6

W1	3.10.4 Decide whether addition or subtraction is required to solve particular one-step word problems and construct bar models to show why	3.10.5 Solve two-step word problems involving addition and subtraction, visualising these with bar models where appropriate	3.10.6 Solve two-step word problems involving addition and subtraction, visualising these with bar models where appropriate	3.10.7 Solve missing number problems involving known multiplication and division facts and facts derived through multiples of 10 (e.g. $\left.30 x _=210\right)$	3.10.8 Use bar models to solve simple correspondence problems using multiplication, given one unit (e.g. one car takes 30 minutes to wash. How long would it take to wash four cars?)
W2	3.10.9 Use bar models to solve correspondence problems where the answer can be found by simple scaling (e.g. It takes 20 sweets to fill 2 boxes. How many sweets would fill 4 boxes?)	3.10.10 Use bar models to solve correspondence problems by first finding the value for one unit (e.g. It takes 40 minutes to wash 2 bikes. How long would it take to wash 3 bikes)	3.10.11 Solve multiplication problems relating to measures	3.10.12 Estimate the answer to addition and subtraction calculations by rounding numbers (roughly) to create friendly numbers with which to calculate $\begin{aligned} & \text { (e.g. } 203+487 \rightarrow 200 \\ & +500) \end{aligned}$	3.10.13 Use estimates before calculating the answer to addition and subtraction questions as a means of checking
W3	3.10.14 Use estimates before calculating the answer to multiplication questions as a means of checking	Consolidation 3.10 Link to reasoning and problem-solving activities	3.11.1 Understand that fractions are made from equal shares of a whole and understand the term 'unit fractions' and 'non-unit fractions'	3.11.2 Understand that the denominator of a fraction shows how many pieces each 'one' is divided equally into (including when there is more than one 'one')	3.11.3 Use a bar model to find unit fractions of an amount, using known division facts
W4	3.11.3 Use a bar model to find unit fractions of an amount, using known division facts	3.11.4 Use a bar model to find nonunit fractions of an amount, using known division and multiplication facts	3.11.4 Use a bar model to find non-unit fractions of an amount, using known division and multiplication facts	3.11.5 Solve word problems which require the finding of unit fractions of amounts	3.11.5 Solve word problems which require the finding of non-unit fractions of amounts
W5	3.11.6 Using a 'fraction wall' diagram, find equivalent fractions, understanding these as fractions that have the same value	3.11.6 Using a coloured parts of a whole, diagram, find equivalent fractions, understanding these as fractions that have the same value	3.11.7 Shade in a half, a third, a quarter and a fifth on diagrams where the number of divisions is a multiple of the denominator	3.11.9 Using bar models, find fraction pairs that add together to make 1	3.11.8 Find the fraction of given shapes that is shaded and the fraction that is not shaded
W6	3.11.10 Solve multistep problems where unit fractions of amounts need to be calculated	3.11.11 Solve multistep problems where unit and nonunit fractions of	3.11.11 Solve multistep problems where unit and nonunit fractions of	Consolidation of 3.11 Link to reasoning and problem-solving activities	Consolidation of 3.11 Link to reasoning and problem-solving activities

	amounts need to be calculated	amounts need to be calculated	

Arithmetic

Fractions

Geometry

Measures \& Time

Properties of number and place value

Statistics

